UPTAKE AND PHOSPHORYLATION OF D-GLUCOSAMINE-1-14C IN THE HUMAN PLATELET

HARVEY M. SOLOMON and ZANE N. GAUT Special Treatment Unit, Martland Hospital, Newark, N.J., U.S.A.

(Received 12 November 1970; accepted 10 March 1971)

Abstract—Human platelets accumulate and phosphorylate D-glucosamine-1- 14 C. The accumulation process is saturable, suppressed by iodoacetic acid and other hexoses, and apparently not mediated by phosphorylation. Neither uptake nor phosphorylation is influenced by L-glucose. Platelet homogenate, supplemented with ATP, phosphorylated the compound with an apparent K_m of $3\cdot 3 \times 10^{-4}$ M. Such phosphorylation is inhibited by other hexoses but not by L-glucose. D-glucosamine kinase in the platelet appears specific since the apparent K_l values for other sugars, including D-glucose, were substantially higher than the apparent K_m of D-glucosamine. No D-glucosamine-6-phosphatase was found in the homogenate.

IN RAT liver glucosamine (G_m) is metabolized to glucosamine-6-phosphate, N-acetylglucosamine, N-acetylglucosamine-6-phosphate, N-acetylglucosamine-1-phosphate, UDP-N-acetylglucosamine, and thence to glycoprotein. Glucosamine is also accumulated against a concentration gradient and metabolized to glucosamine-6-phosphate in yeast and similarly, phosphorylated in ascites tumor cells. Although a mucopolysaccharide, containing glucosamine, has been isolated from the blood platelet, relatively little is known concerning the mode whereby this sugar enters the cell. The present study characterizes the accumulation and phosphorylation of G_m by the human platelet.

EXPERIMENTAL SECTION

Platelet-rich plasma was obtained from healthy donors as previously described.8 Approximately 35 mg wet weight of cells were sedimented, washed twice with trisbuffered saline (pH 7.5) containing 1.3 mM EDTA, and resuspended in 0.9 ml Ca²⁺ and Mg²⁺ free Krebs-Ringer bicarbonate buffer (pH 7·4). Samples were incubated for varying periods of time at 37° in a Dubnoff metabolic shaker with 0·1 ml of D-glucosamine-1-14C hydrochloride (G_m) solutions. After incubation, the platelets were sedimented, supernatants decanted and the tubes swabbed with a cotton-tipped applicator. The samples were weighed and lysed in 1 ml of distilled water. G_m , Dglucosamine-6-phosphate (G_m-6-P), UDP-N-acetylglucosamine (UDPAGA) and N-acetylglucosamine-6-phosphate (AG_m-6-P) in the supernatants and lysates were separated on thin layers of cellulose (TLC) utilizing solvent systems I, II and III (Table 1). "Carrier" G_m, G_m-6-P, UDPAGA and AG_m-6-P were added to the platelet lysate and medium prior to chromatographic separation. G_m and G_m-6-P were visualized with ninhydrin, UDPAGA with u.v. light and AG_m-6-P with ammonium molybdate and stannous chloride.9 Thereafter the cellulose was scraped from the plates, suspended in gelled scintillation medium and the radioactivity determined.10

TABLE	1.	CHROMATOGRAPHIC	SEPARATION	OF	GLUCOSAMINE	AND	METABOLITES	ON	THIN	LAYERS	OF
				C	ELLULOSE						

Solvent system	R_f v	alues of sta	f standard compounds	
	UDPAGA	$G_{\mathfrak{m}}$	G _m -6-P	AG _m -6-P
I. Ethanol-water-NH ₄ OH (65:35:5)	0.83	0.72	0.35	0.25
II. Ethanol-water-acetic acid (65:35:5)	0.68	0-68	0.31	0.18
III. N-propanol-water-acetic acid (70:30:5)	0.45	0.64	0.34	0.34

The distribution ratio ([I]/[0]) of G_m was expressed as the ratio of disintegrations per minute per millilitre of platelet water to disintegrations per minute per millilitre of incubation medium. Total platelet water was 76 per cent and extracellular water 27 per cent of the wet weight of the platelet pellet.¹¹ The concentration of G_m in the intraplatelet water was corrected for that trapped within the extracellular space of the platelet pellet according to the formulation of Helmreich and Kipnis.¹² Radioactivity of all samples exceeded 10 times background. Counting efficiency determined by the channels ratio method was 72–76 per cent. D-glucosamine-1-¹⁴C hydrochloride (sp. act. 52 mc/m-mole), obtained from New England Nuclear Corp., was found to be greater than 96 per cent pure by thin-layer chromatography.

In some experiments the influence of various sugars on the uptake of G_m by the platelet was studied; similarly, the influence of iodoacetic acid on the uptake of G_m was evaluated.

Further experiments evaluated the enzyme, G_m kinase, in platelet lysate. Approximately 100 mg (wet weight) of human platelets were lysed in 1.5 ml of distilled water

Table 2. Apparent inhibitory constants (K_i) for various compounds which inhibit the conversion of glucosamine to glucosamine-6-phosphate by human platelet lysate*

Inhibitor	Concentration of inhibitor (M)	<i>K_t</i> (M)
N-Acetyl-D-glucosamine	1 × 10 ⁻³	5·0 × 10 ⁻⁴
D-Glucose	2×10^{-4}	1.0×10^{-3}
D-Mannose	2.5×10^{-4}	1.2×10^{-3}
D-Mannosamine	5×10^{-4}	2.4×10^{-3}
2-Deoxy-D-glucose	1×10^{-3}	4.2×10^{-3}
D-Fructose	1×10^{-3}	4.8×10^{-3}
D-Mannoheptulose	1×10^{-3}	4.8×10^{-3}

^{*} Results of representative experiments are shown. Parallel controls accompanied each experiment.

and 0·3-ml aliquots incubated in Ca^{2+} -free, Krebs-Ringer bicarbonate buffer modified to contain Mg^{2+} , 3·0 mM; NaF, 1·0 mM; ATP, 1·0 mM; and various concentrations of G_m -1·1·4C. Such incubations were carried out in total volumes of 0·7 ml in a metabolic shaker under 95% O_2 -5% O_2 for 30 min at 37°. Other sugars (Table 2) were added to some incubates to obtain their apparent inhibitory constants for G_m kinase; parallel controls accompanied each of these determinations. The intercepts, for calculation of the apparent K_i values, were obtained by the method of least squares. The reaction was stopped by immersing the tubes in solid O_2 -acetone mixture. Subsequently "carrier" O_m , O_m -6-P, O_m -6-P, O_m -6-P were added to the lysate and the compounds separated on thin layers of cellulose as described above.

The lysate was also incubated with D-glucosamine-1- 14 C-6-phosphate, disodium salt (sp. act. 40 mc/m-mole) at a concentration of 3.4×10^{-7} M for 1 hr and subsequently analyzed for G_m -1- 14 C.

RESULTS

Uptake of G_m by the intact platelet. Human platelets, incubated with $^{14}\text{C-G}_m$ (2 \times 10⁻⁶ M) for 15 min, accumulated free G_m in the intraplatelet water with a distribution ratio ([I]/[O]) of 3·0 (Table 1). Accumulation decreased progressively with increasing concentration of G_m in the medium such that the distribution ratio declined to 1·0 at 1 \times 10⁻⁴ M.

Since the total uptake of $^{14}\text{C-G}_m$ was in excess of that attributable to unchanged G_m , phosphorylation was considered and confirmed by TLC. The rates of penetration and phosphorylation of G_m in the platelet were virtually linear during the initial 15 min of incubation (Fig. 1). During this phase the rate of entry approximated 0.91

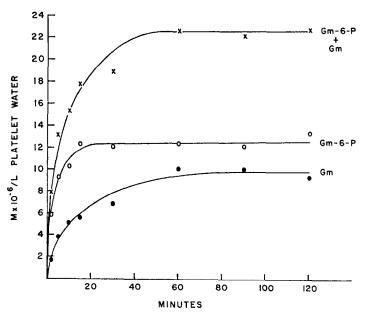


Fig. 1. Total rate of penetration of glucosamine (G_m) and rates of accumulation of free G_m and glucosamine-6-phosphate $(G_m$ -6-P) by the human platelet. Platelets were incubated at 37° with G_m at an initial concentration of 2×10^{-6} M. Results of a representative experiment are shown.

 $\pm\,0.19 \times 10^{-12}$ mores G_m per mg platelet per min (mean $\pm\,$ S.E. of five experiments) and phosphorylation, $0.63 \pm 0.15 \times 10^{-12}$ moles G_m/mg platelet per min. Between the 30th and 60th min of incubation further entry and phosphorylation of G_m ceased (Fig. 1). At all times more than 90 per cent of the intraplatelet radioactivity was accounted for as G_m and G_m -6-P; less than 5 per cent appeared, respectively, as UDPAGA and AG_m -6-P.

The influence of iodoacetic acid (10^{-3} M) on the intracellular concentrations of G_m and G_m -6-P is presented in Table 3. Iodoacetic acid diminished the intracellular

Table 3. Influence of changes in concentration of glucosamine (G_m) on its distribution ratio in the human platelet after 15 min of incubation*

Initial G_m concn in medium (M)	Free G _m [I]/[O]
$\begin{array}{c} 2 \times 10^{-6} \\ 1 \times 10^{-5} \\ 5 \times 10^{-5} \\ 1 \times 10^{-4} \end{array}$	3.0 ± 0.6 2.8 ± 0.4 1.6 ± 0.3 1.0 ± 0.1

^{*} Results expressed as mean \pm S.E. of four experiments.

concentration of G_m when the initial concentration of the amino sugar was 2×10^{-6} M and 1×10^{-5} M but not 1×10^{-4} M. This inhibitor also diminished the intracellular concentration of G_m -6-P at initial G_m concentrations of 1×10^{-4} M and 1×10^{-5} M but not at 2×10^{-6} M.

Accumulation and phosphorylation of G_m by the intact platelet were also influenced by other hexoses (Table 4). The intracellular concentrations of G_m and G_m -6-P were

Table 4. Influence of iodoacetic acid $(10^{-3}\ M)$ on the intraplatelet concentrations of glucosamine (G_m) and glucosamine-6-phosphate $(G_{m^-}6\text{-P})$ after 15 min of incubation*

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Initial G _m concn in medium	Treatment		telet conc. latelet H ₂ O	, •	ease from ntrol
Control 5.2×10^{-6} 10.3×10^{-6} 54.0 1×10^{-5} Iodoacetate 0.8×10^{-5} 2.5×10^{-5} 70.1 1×10^{-4} Iodoacetate 1.0×10^{-4} 2.9×10^{-4}	(M)		G_{m}	G _m -6-P	G_m	G _m -6-P
Control 2.7×10^{-5} 9.3×10^{-5} 70.1 1×10^{-4} Iodoacetate 1.0×10^{-4} 2.9×10^{-4}	2 × 10 ⁻⁶				54.0	0.0
	1×10^{-5}				70·1	73.0
	1 × 10 ⁻⁴	Iodoacetate Control	1.0×10^{-4} 1.0×10^{-4}	$\begin{array}{c} 2.9 \times 10^{-4} \\ 6.3 \times 10^{-4} \end{array}$	0.0	64.0

^{*} Results of representative experiments and parallel controls are shown.

diminished by D-glucose, D-mannose, and 2-deoxy-D-glucose. L-glucose, N-acetyl-D-glucosamine, D-fructose, 6-deoxy-D-glucose, and D-mannoheptulose at 1×10^{-3} M did not inhibit accumulation or phosphorylation of G_m by the platelet.

Phosphorylation of G_m by platelet homogenates. When incubated with ¹⁴C- G_m and ATP, human platelet lysate incorporated radioactivity into G_m -6-P. The rate of phosphorylation of G_m was dependent upon its concentration and linear during the first 30 min of incubation. Figure 2 reveals the apparent K_m for G_m to be 3.3×10^{-3} M

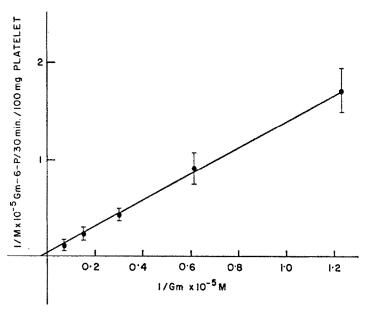


Fig. 2. Lineweaver-Burk plot of concentration of glucosamine (G_m) versus rate of formation of glucosamine-6-phosphate $(G_m$ -6-P) by human platelet lysate. See text for composition of incubation medium. Results expressed as mean \pm S.E. of four experiments.

and V_{max} , 2.0×10^{-4} moles G_m -6-P/30 min/100 mg platelets. A variety of sugars inhibited the phosphorylation of G_m and apparent inhibitory constants for these compounds are presented in Table 5. Of the compounds studied N-acetyl-D-glucosamine was the most potent inhibitor with an apparent K_i of 5.0×10^{-4} M; the value for D-glucose was 1.0×10^{-3} M. Phosphorylation of G_m by platelet lysate was not inhibited by the following compounds at a concentration of 1×10^{-3} M: D-glucosamine-6-phosphate, 6-deoxy-D-glucose, L-glucose, D-fructose-6-phosphate, and D-fructose-1, 6-diphosphate.

Platelet lysate was also incubated with p-glucosamine-1- 14 C-6-phosphate at a concentration of 3.4×10^{-7} M for 1 hr and then analyzed for G_m -1- 14 C by TLC. In excess of 90 per cent of the radioactivity was recovered as intact compound and none as G_m -1- 14 C; hence no G_m -6-phosphatase was present.

DISCUSSION

Human platelets incubated with G_m at a concentration of 2×10^{-6} M accumulate this compound against a gradient by a process which is restrained by iodoacetic acid

TABLE 5. INFLUENCE OF VARIOUS	s hexoses (10^{-3} M) on	N THE INTRAPLATELET	CONCENTRATIONS OF
GLUCOSAMINE (G_m) AND GLUC	cosamine-6-phosphate (G _m -6-P) after 15 min	OF INCUBATION*

York 11. San o		elet concn latelet H ₂ O	% Decrease from control		
Inhibitor	G _m	G _m -6-P	G _m	G _m -6-P	
D-Glucose	2·1 × 10 ⁻⁶	2·7 × 10 ⁻⁶	(2.0	77.4	
Control	5.5×10^{-6}	12.0×10^{-6}	62.0	77.4	
D-Mannose	1.8×10^{-6}	5.7×10^{-6}	45.0	50.0	
Control	5.2×10^{-6}	13.8×10^{-6}	65.0	59.0	
2 Deoxy-D-glucose	$2\cdot2\times10^{-6}$	5.9×10^{-6}	54.0	52.0	
Control	5.0×10^{-6}	12.3×10^{-6}	56.0	52.0	
L-Glucose	5.9 × 10 ⁻⁶	11.2×10^{-6}	2.2	0.0	
Control	6.1×10^{-6}	11.2×10^{-6}	3.3	0.0	

^{*} In all studies the initial concentration of G_m was 2×10^{-6} M. Results of representative experiments and parallel controls are shown.

and various hexoses including D-glucose, D-mannose, and 2-deoxy-D-glucose. Such accumulation exhibits specificity since L-glucose (1 \times 10⁻³ M) had no effect. The decrease in the distribution ratio from 3·0 to 1·0 with increasing concentrations of G_m (Table 1) suggests that the uptake process is saturable. G_m , at the highest concentration (1 \times 10⁻⁴ M), apparently enters the platelet by passive diffusion since its rate of penetration is not diminished by iodoacetic acid.

Although a gradient for free G_m was established at an extracellular concentration of 2×10^{-6} M, approximately 52 per cent of the total sugar within the platelet was present as G_m -6-P (Fig. 1). The absence of G_m -6-phosphatase suggests that G_m transport is not mediated by phosphorylation. The capacity for uptake exceeds that of phosphorylation since free G_m is present in the platelet. When the intracellular concentration of G_m -6-P approached $1\cdot 2\times 10^{-5}$ M the rates of G_m accumulation and phosphorylation markedly decreased. Such decreases in rates are apparently not due to inhibition of G_m kinase by G_m -6-P since a much higher concentration of this compound $(1\times 10^{-3}$ M) did not inhibit the enzyme in platelet homogenate. The data rather suggest feedback inhibition of G_m transport at the membrane by G_m -6-P. A similar hypothesis holds relative to uptake of 2-deoxy-p-glucose by the platelet.¹³

Iodoacetic acid (10^{-3} M) inhibits the phosphorylation of G_m at initial concentrations of 10^{-5} M and 10^{-4} M but not at 2×10^{-6} M (Table 3). Presumably, at the lowest concentration of G_m , sufficient ATP remains available within the platelet for phosphorylation despite the presence of iodoacetic acid.

Studies with homogenates of other cells are consistent with nonspecific hexokinases which, at the expense of ATP, phosphorylate a variety of sugars including G_m . For

example, in beef brain, the K_m for D-glucose is 0·1 mM and for G_m , 0·6 mM¹⁴. In rat adipose tissue, the values are 0·03 mM and 0·5 respectively. ¹⁵ Though these hexokinases lack specificity, they prefer D-glucose over G_m . In contrast, the enzyme responsible for phosphorylation of G_m in human platelet lysate seems to prefer G_m since the apparent K_i values for other sugars including D-glucose (Table 5) are much larger than the apparent K_m of G_m . Failure of L-glucose to inhibit the phosphorylation of G_m by platelet lysate further documents the enzyme's stereospecificity.

Hindrance of G_m phosphorylation by D-glucose is probably not due to competition for ATP since inhibition occurred in the presence of 2×10^{-4} M glucose and 10^{-3} M ATP. Furthermore the velocity of G_m phosphorylation was not diminished in the absence of glucose when ATP was reduced to 8×10^{-4} M. Such a concentration of ATP would have resulted if all the glucose at 2×10^{-4} M had been phosphorylated. ATPase activity in the lysate was precluded by the addition of NaF (10^{-3} M).

The penetration and phosphorylation of G_m by the intact platelet is not influenced by N-acetyl-D-glucosamine (1 \times 10⁻³ M). In contrast this compound, at the same concentration, is a competitive inhibitor of the phosphorylation of G_m by platelet lysate. These results suggest that the membrane of the intact platelet is impermeable to N-acetyl-D-glucosamine. Similarly rat adipocytes, Ehrlich ascites tumor cells and sarcoma 180 ascites tumor cells do not permit entry of this compound.^{4,16}

REFERENCES

- 1. J. F. McGarrahan and F. Maley, J. biol. Chem. 237, 2458 (1962).
- 2. J. Molnar, G. B. Robinson and R. J. Winzler, J. biol. Chem. 239, 3157 (1964).
- 3. M. BURGER and L. HEJMOVA, Folia microbiol. Praha, 6, 80 (1961).
- 4. R. K. CRANE, R. A. FIELD and C. F. CORI, J. biol. Chem. 224, 649 (1957).
- 5. T. GUNTHER, M. WENZEL and H. GREILING, Hoppe-Seyler's Z. physiol. Chem. 326, 212 (1961).
- 6. T. GUNTHER, M. WENZEL and T. Z. EBERHARD, Klin. Chem. 3, 76 (1965).
- 7. B. ANDERSON and T. T. ODELL, JR., Proc. Soc. exp. Biol. Med. 99, 765 (1958).
- 8. P. D. Zieve, H. M. Solomon and J. R. Krevans, J. cell. comp. Physiol. 67, 271 (1966).
- 9. H. Seiler, in *Thin-Layer Chromatography* (Ed. E. Stahl), p. 482. Academic Press, New York (1965).
- J. N. Bollinger, W. A. Mallow, J. W. Register and D. E. Johnson, *Analyt. Chem.* 39, 1508 (1967).
- 11. P. D. ZIEVE and H. M. SOLOMON, J. clin. Invest. 45, 1251 (1966).
- 12. E. HELMREICH and D. M. KIPNIS, J. biol. Chem. 237, 2582 (1962).
- 13. H. M. SOLOMON and Z. N. GAUT, Biochem. Pharmac. 19, 2631 (1970).
- 14. R. P. HARPUR and J. H. QUASTEL, Nature, Lond. 164, 693 (1949).
- 15. A. HERNANDEZ and A. Sols, Biochem. J. 86, 166 (1963).
- 16. J. G. BEKESI, E. BEKESI and R. J. WINZLER, J. biol. Chem. 244, 3766 (1969).